If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+56x+80=0
a = 8; b = 56; c = +80;
Δ = b2-4ac
Δ = 562-4·8·80
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-24}{2*8}=\frac{-80}{16} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+24}{2*8}=\frac{-32}{16} =-2 $
| n=(1*2)/(3*4) | | (u+5)2+6u=10(u+2) | | n-12×8=12 | | (3a-4)=2 | | 5m/3=2m+4 | | x=(180-x)÷(1÷4)=36 | | 6+7x/10=2x/5 | | 4x^2-16x+88=-10 | | n-8=12+5n+1-5 | | 25x-12+15x-18=4x+6x | | 3m-6-17m=4m+7 | | 8-n=12+5n+1-5 | | 8(1-x)=8(1+4x) | | 225x+4=5 | | 17-8p=2-3p | | 6x+18=5x | | m+7=3-m+4 | | 15h+4-3=17h+16-3 | | F=P(1+5r) | | 15=4(x-1)-(x-7) | | 5050=0.5n(n+1) | | 1/4x+8=10 | | 2(2x-2)-4=2(x-5)+12 | | -8(g-2)=4(g+6) | | 2^(x-1)-2^(x-4)=7(2^11) | | 5x-2/4-2x-4/4=5 | | 6x-(9x+5)=2x-50 | | 4(t-12)=5(3+t) | | 5/6h=-13 | | 2y-18=5 | | 1.65s+187=187+1.65s | | 4+3x=20-5× |